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ABSTRACT

The instability of beaches and bluffs of the north shores of Nassau and
Suffolk Counties is described over geoclogic time and as influenced by individual
storms.

The geologic history and present features of the shoreline are described.
An inventory is provided of shoreline length, bluffs, dunes, sediment charac-
teristics, summer beach profiles, shore zone vegetation, and man-made structures
designed to modify natural processes. The influences of natural processes which
continually mcdify these shoreline features are also described. These processes
are sea level changes, winds, waves, tides, littoral transport, and rain runoff.
Emphasis is placed upon the major short-term influences of storms, including their
frequencies and intensities.

The extremely expensive attempts of man to inhibit dynamic beach processes
are evaluated. Results of these attempts are often found to be unpredictable and
either ineffective or detrimental.

Large areas of the shore zone are found to be subject to infrequent tidal
flooding. These areas are mapped and the numbers of structures located in this
flood plain are enumerated.

A detailed case history is presented of the geological processes influencing
the Crane Neck region north of Stony Brook village.

The features of beaches and the historical rates of erosion or accretion at
158 locations are summarized in a Beach Utility Index designed to guide the most
rational use of specific shoreline reaches. In addition to estimates of erosion
and accretion rates, this utility index summarizes at specific locations the
natural barriers to erosion, beach width, sediment grain size of the forebeach
and backbeach, and accessibility to the beach.

A number of recommendations are made to reduce the likelihood of fatalities
and property damage in the shore zone by restricting development in hazardous
areas. The recommendation is alsc made that future engineering structures
designed to stabilize portions of the beach should not be constructed without
detailed knowledge of their influences upon adjacent property.
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Chapter 1

INTRODUCTION

The Erosion Problem of Long Island's North Shore: the Objectives and Scope
of this Study

Beach and bluff erosion on long Island's north shore has produced important
social, legal and political issues. The issues are too often based on the
expectation that the shoreline will remain stable after residential, recreational
or commercial development. Developers soon realize that the shoreline is not
static; it is subject to both short-and long-term processes which change its
configuration. Beaches can either erode or accrete naturally, depending on their
position in relation to the sources of sand supply, their exposure to wind waves,
and the direction and intensity of littoral transport, i.e. "the movement of
material along the shore in the littoral zone by waves and currents" (U.S. Army
Coagtal Engineering Research Center, 1966, p. A-20).

Unlike the dunes on the barrier bars and spits so typical of Long Island's
south shore, which can either erode or accrete depending on storm and wind
conditions, the bluffs of Long Island's north shore can only remain stable or
recede. Stable bluffs are usually associated with gradually sloping bluff faces,
vegetative cover and wide protective beaches; whereas receding bluffs are usually
those with steep bluff faces, little or no vegetative cover and narrow beaches.
Bluff recession results from the erosive effects of storm tides, spring discharge
and rain runcff.

Coastal erosion on Long Island's north shore has been designated "critical"
by the U.S. Army Corps of Engineers (197la). According to this report, the rate
of erosion and character of development in such critical areas justify the use of
beach nourishment (replenishing a beach through deposition of dredged materials)
or the construction of shore protection devices to alleviate the erosion problem.
The estimated first cost for shore protection in the form of beach nourishment
along the entire north shore of Nassau and Suffolk Counties is more than 100
million dollars (U.S. Army Corps of Engineers, 197la, p. 104). This estimate does,
not include the price of annual beach nourishment for maintenance purposes.

Improved transportation facilities and a better standard of living and more
leisure time have caused extensive development of Long Island's shores during the
last 30 years for both residential and recreational purposes (Renshaw, 1969).
Swimming is by far the most popular outdoor recreational activity for residents of
the bi-county region and alsoc for the many summer visitors who frequent the shores
of eastern Long Island (New York State Office of Planning Coordination, 1971).
Early development of the shoreline often proceeded without due regard for shore-
line erosion trends. Storm wave attack and shore recession structural damage,
loss of shorefront property and loss of business have resulted in the construction
of shore—-protection devices and beach fill along the north shore. The data of
Table 1-1 show the number and type of such structures as of 1965 along the north
shore of Suffolk County. Shore protection investment in terms of 1971 prices is
also shown.

Many groups and communities have requested federal aid for additional
structures (U.S. Army Corps of Engineers, 1969). Federal financial assistance
for shore-protection projects on public land cannot exceed 70 percent of the
construction cost, with the remaining 30 percent assumed by local and state
government. However, if the shore in question is privately owned, and there is no
public use of the land or benefit in its protection, then federal funds cannot be

authorized for the project (U.S. Army Corps of Engineers, 1970). Therefore,
little federal aid is available for the north shore of Suffolk County, because



81 percent of the 139 km (86 mile) shoreline is privately owned (U.S. Army Corps
of Engineers, 1971la).

Table 1-1. SHORE PROTECTION STRUCTURES AS OF 1965, NORTH SHORE, SUFFOLK COUNTY,

NEW YORK?Z
Structure Number Length Cost/mb Range of Existing Investment
{m) (dollars) (millions of dollars)

Groins 237 7073 656 to 2,296° 4.6 to 16.2

Jetties 14 2768 656 to 2,2963 .8 to 6.4

Bulkheads jol 8651 245 to 327 2.1 to 4.2

Seawalls 34 5235 656 to 1,635 3.4 to 8.6

Revetments 2 534 245 to 490 0.1 to 0.3

Total Investment 12.0 to 35.7

a

bU.S. Army Corps of Engineers (1969).

U.S. Army Corps of Engineers (1971). Shore protection guidelines. Washington,
D.C., 59 p.

Mr. James Daniels, Beach Erosion and Hurricane Section, New York District, U.S.
Army Corps of Engineers, supplied the groin cost figures. The lower limit
represents the cost of timber groing, while the upper limit represents the cost
of stone groins similar to those constructed on the south shore barrier beaches.
Jetty costs per meter are assumed to be the same as the cost for groins.

Shore-protection structures change the dynamics of beach equilibrium and can
result in unwanted accretion or erosion. In Suffolk County, severe beach and
bluff erosion has been reported by residents of Jamesport and Wading River who
allege that jetties constructed by the Curtiss-Wright Corporation and LILCO,
respectively, have blocked the supply of sand that nourished their beaches
(Newsday, 2/%/71, p. 10; 3/11/71, p. 21; 6/21/71, p. 3; 7/12/71, p. 6; 9/27/71,
p. 7; 4/13/72, p. l6).

Shoreline development in the bi-county region will increase in the future
(Nassau-Suffolk Regional Planning Board, 1970). Most of this growth will occur
along the shores of Suffolk County, because the shores of Nassau County have
already experienced extensive development. The Nassau-Suffolk Regional Planning
Board estimates that the bi-county population will increase by 800,000 in the
period 1970 to 1985, requiring roughly 24,000 acres of additional recreational
and open space land by 1985 for local residents alone (New York State Office of
Planning Coordination, 1971). The immense popularity of swimming as a
recreational activity may necessitate the development of extensive tracts of
land at the shore. The north shore of Long Island, especially that portion
located in Suffolk County which is used relatively little, has tremendous
potential in helping to solve the region's shoreline recreational needs. Suffolk
County has already included parts of the north shore in its capital acquisitions
program for preservation purposes (Klein, 1972).

Development of the north shore will require long-range planning based on
increasingly thorough understanding of the processes affecting the configuration
of the shoreline. Knowledge of beach and bluff erosion trends can be used to
great economic advantage for land acquisition and development. Areas with
histories of accretion should receive more favorable consideration in planning
future development than areas with histories of erosion. Perhaps acquisition



costs can be decreased if the value cof a piece of shorefront land is decided on
the bagis of its "expected life" as a piece of property. Increased knowledge of
littoral forces can be used to minimize the likelihood of deleterious effects of
shore protection structures.

Chapter 2 discusses the causes and effects of the erosion problem on Long
Island's north shore. The problem consists of the effects of tidal flooding and
shoreline change on beaches and shoreline development. Information is presented
from a geologic point of view which assumes that the present beach and shoreline
are the result of natural forces acting over long periods of time (Krumbein,
1863). The main objectives of Chapter 2 are:

1. to present a brief physical description of Long Island's north shore:

2, to assess winds, waves and tides as littoral forces affecting the
north shore;

3. to assess hurricanes and extratropical storms as active geologic
agents, and describe the effects they have on different shore
environments.

These objectives form part of the suggested general approach to be used in
solving the erosion problem on Long Island's north shore as mentioned in
Section 1.5 of Bartholomew and McGuinness (1972).

Chapter 3 presents an inventory of the north shore in terms of shoreline
erosion and accretion, bluff recession and flood plain delineation. Grain size
analyses and beach width measurements are shown for selected locations. A Beach
Utility Index is developed from shore higtory and characteristics. The Utility
Index can be used to visualize beach qualities quickly, and as a tool for
planning future beach use.

Chapter 4 is a case study of one section of the north shore, Crane Neck, over
an 80-year period. The Beach Utllity Index developed in the previousg chapter is
applied here, and specific recommendations are made for future management and
beach development.
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Chapter 2
STABILITY OF THE NORTH SHORE, LONG ISLAND, NEW YORK

Literature Review

A comprehensive study of shore processes and beach dynamics has not been
made for Long Island's north shore. Early investigators such as Mather (1843) and
Johnson (1925) described the region's geomorphology. North shore erosion was
recognized as an economic problem by the New York State Legislature in 1947.

The U.S. Army Corps of Engineers (1969) published a beach erosion control and
interim hurricane study covering the north shore of Suffolk County. A comparison
report is, however, sorely needed for the north shore of Nassau County. The

U.S. Army Corps of Engineers (1971a) also includes Long Island's north shore as
part of its national shoreline inventory.

The north shore of Long Island is classified as a glacial deposition coast
by Shepard (1963). Initial irregularities of the submerged moraine coast have
been smoothed out by marine erosion and deposition with the result that the
coast is in a submature stage of development (Johnson, 1919; 1925). The beach
environment of the north shore is similar in many respects to other areas in the
Long Island Sound-New England region (U.S. Geological Survey, 1970, p. 79).

Physical Characterigtics of the North Shore

A. Physiography of the Long Island North Shore Region

The main topographic features of the Long Island north shore region are the
Long Island Sound valley, the north shore harbors and bays, and the north shore
scarp and plateau.

The depression that is now Long Island Sound had its origin during Tertiary
time when sea level was lower than it is at present (Suter, deLaguna and
Perlmutter, 1949). A stream (Sound River) developed along the interface of the
Cretaceous sediments of the south with deeply weathered bedrock to the north. This
occurred some distance south of the present Connecticut coast (Johnson, 1925). The
Cretaceous sediments formed a ridge with a gentle southern slope and a steep
northern slope, cut by the transverse valleys of north-flowing streams. These
streams joined the Sound River at the base of the ridge. Veatch (1906) believed
that the Sound River, which occupied a drainage basin aligned in a north to south
fashion gsimilar to that of the Connecticut River, flowed in a westerly direction
before cutting across the area that is presently Queens and Jamaica Bay to enter
the Hudson Canyon on the continental ghelf. Fuller (1914) thought that the
westerly flow of the Sound River was obstructed by the deposition of the Gardiners
and Manhasset formations, with the result that flow was diverted to the east.
Suter et al. (1949) discounted the evidence for a westward-flowing Sound River,
and stated that it flowed to the east in a channel at the base of the ridge. This
channel presumably turned south in the Peconic-Shinnecock Bay area of Long Island
and eventually reached the Hudson Canyon.

Evidence suggests that the Long Island Sound depression was the site of a
large periglacial lake or several smaller ones, formed after the glacial ice which
deposited the Harbor Hill terminal moraine about 17,000 years ago receded north
into New England (Sirkin, 1967). The lake or lakes were drained prior to the rise
in sea level which inundated the Sound basin (Grim, Drake and Heirtzler, 1970).

The north shore harbors and bays apparently are in locations coincident with
the valleys of the Cretaceous erosion surface formed during the Tertiary (Fuller,
1914). The Cretaceous rocks were covered by the Manhasset formation and, later on,



by Wisconsin drift and till. The Manhasset formation is a plateau 30 to 60 m
(100 to 200 ft) above sea level, sloping gently toward the south. A scarp,
originally the ice contact slope of the Manhasset glacier and later subdued by
Wisconsin ice erosion, faces this plateau. Since stabilization of sea level,

marine forces have cut bluffg and a narrow bench in the scarp and worn away its
projecting headlands.

The headlands of the north-draining valleys to the east of Port Jefferson
have been eroded by wave and current action. For the most part, the remnant
headlands, such as Herod, Roancke, and Horton Points, are the result of geologic
control, as the clay and till layers which outcrop in the bluffs at these areas
are more resistant to erosion than the layers in nearby regions (U.S. Army Corps
of Engineers, 1969). Because of the southeast slope of the bedrock beneath Long
Island, a smaller volume of Manhasset material lies at or near sea level in the
eastern section of the north shore than in the western section. Therefore, the
north shore plateau is inconspicuous or invisible in this eastern region.

The north shore of Long Igland can be divided into two segments on the basis
of topography and shoreline trends. The eastern segment from Port Jefferson Harbor
to Orient Point is approximately 110 km (68 miles) long; the western section from
Port Jefferson to Willets Point on Little Neck Bay is approximately 240 km
(142 miles). These distances include the shoreline of bays and harbors.

B. Shoreline West of Port Jefferson

The shoreline west of Port Jefferson is highly irregular, indented by several
deep harbors and bays: Little Neck Bay, Manhasset Bay, Hempstead Harbor, Oyeter
Bay, Cold Spring Harbor, Huntington Bay, Stony Brook Harbor and Port Jefferson
Harbor. These bays and harbors occupy positions which were formerly the valleys
of the north-draining streams of Cretaceous time (Fuller, 1914). They are
separated by peninsulas or necks which project into Long Island Sound. The narrow
beaches of the necks are backed in some areas by the fresh cliffs or bluffs of
the shore scarp. The bluffs are mainly composed of the Manhasset formation, a
combination of till and outwash deposits which is covered by a thin layer of
Harbor Hill till and retreatal outwash. Bluff height is generally low (roughly
10 m) in the extreme western portion of the island near Manhasset and Little Neck
Bays, and increases to between 23 m (75 £t) and 33 m (110 f£t) at Lloyd Point,
Eatons Necks and the Nissequogue area. Further east the bluffs are less
elevated - about 26 m (85 ft) at Crane Neck Point and 12 m (39 ft) at 0ld Field

Point, with small pocket beaches located between the projecting points of the
necks.

Elevations increase abruptly from 60 m (200 ft) to 90 m (295 ft) in the
centers of the necks and in the regions at the heads of the harbors. The Harbor
Hill terminal moraine is located south of the harbors and intersects the coast
east of Port Jefferson, near the vicinity of Rocky Point (Flint, 1971, p. 58l).
Material eroded from the necks and offshore islands* was deposited as spits
(e.g. West Beach on Eatons Neck), baymouth bars (e.g. 0ld Field Beach at Port
Jefferson Harbor) and tombolos (bars like Asharoken Beach which connect offshore
islands to the mainland). Dune sands are frequently associated with these
depositional forms. Marshes, such as those at Stony Brook Harbor, Flax Pond and
West Meadow Beach, generally occupy small depressions in the coast and are
separated from the Sound by beach deposits.

cC. Shoreline East of Port Jefferson

The shoreline east of Port Jefferson comprises gently curved beaches
separated by headland areas which project only a slight distance seaward of the

*Areas such as Eatons Neck were once offshore islands.



general shore trend. For the most part, the headlands are associated with high
bluffs, such as the 42 m (140 ft) elevation at Herod Point. East of Port
Jefferson, the Harbor Hill terminal moraine crowns the north-shore scarp. This
moraine contains more boulders (glacial erratics) than its southern counterpart,
the Ronkonkoma moraine (Muller, 1965). Boulder lag deposits are often found in
the projecting headlands of the north shore.

East of Port Jefferson the bluffs are more continuous than those to the west.
In general, bluff height decreases from Port Jefferson to Orient Point. Between
Port Jefferson and Herod Point, the bluff height ranges from 30 m (100 ft) to
42 m (140 ft). East of Herod Point, bluff height gradually decreases, reaching
approximately 10 m (33 ft) near Orient Point. Marshes and beach deposits, such as
those found at Mt. Sinai Harbor, Wading River and Fresh Pond, have accumulated in
depressions where the bluff is discontinuous. Other sections, for example Friars
Head, are composed of wind-blown deposits in the form of dunes. In some sections,
such as near Sound Beach, wind deflation (the removal of material by wind action)
of bare bluff faces has formed dunes on the tops of the bluffs. Low bluffs and
scattered hills are found immediately west of Orient Point.

Shoreline Features and Processes

A, Beaches, Beach Processes and Nomenclature

Perhaps the most useful definition of a beach is "the zone of unconsolidated
material extending landward from the mean low water line to the place where there
is a change in material or physiographic form, as for example, the zone of
permanent vegetation, or a zone of dunes or a sea cliff" (Kukal, 1971, p. 209).
Beaches are among the most variable of landforms in that they can erode, accrete
or remain stable over time. Long-term changes in the formation and configuration
of beaches are affected by regional geomorphology and type of available beach
material (Don Wong, 1970). Short-term periodic changes, daily or seasonal, are
due to the quantity of beach material available and the characteristics of waves
supplying energy at the shoreline. Beaches remain stable only in areas where the
supply of material brought into the littoral zone is equal to that removed
(Zeigler, Tuttle, Giese and Tasha, 1964). Discussion of beach processes requires
the use of shoreline terminology diagrammed in Figure 2-1.

Projecting headlands and shore bluffs of the north shore are the major
sources of sediment supplied to the beach environment. Onshore movement of
material from offshore portions of Long Island Sound is no doubt minimal (U.S.
Army Corps of Engineers, 1969). We have found some cobbles with attached
vegetation on the beaches after transport from offshore regions because of
storm turbulence. Sand originally removed from some north-shore beaches during
stormy weather and deposited in shallow water offshore gradually redeposits on
these beaches during periods of calm weather. Long Island Sound acts as a barrier
to any sediment delivered from the Connecticut shore by river transport.

Bluff deposits of the north shore consist of a heterogeneous mixture of
glacial debris ranging in size from large boculders down to clay and silt. This
debris is subject to the sorting action of winds and waves. The coarser
material is concentrated as lag deposits in those sections of the environment
subject to the most intense wave action (Evans, 1939; Bagnold, 1954; Ingle, 1966;
and see Fig. 2-2). Gravel deposits are found in the foreshore zone because
of selective transport along the breaker plunge line (the zone of maximum
turbulence located immediately seaward of the swash zone) and on the berm as the
result of storm activity and high tides. After removal from the beach deposit,
fine sand, silt and clay are deposited in the guieter waters of offshore areas,
tidal marshes, harbors and bays. Wind-winnowed sands stabilized by vegetation
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have formed dunes at bar environments, and in some instances, at the basg of
stable bluffs. The data of Figure 2-2 summarize the energy-sediment environments

associated with beaches.

B. Sea Level Changes

All coasts of the world have experienced some submergence since the last ice
age (Shepard and Wanless, 1971). This submergence is probably a result of
continental ice sheet melting and has played a major role in shaping the con-
figuration of Long Igland's shoreline. The maximal lowering of relative sea
level - roughly 100 m - occurred approximately 20,000 years ago (Curray, 1965).
At that time much of the continental shelf was exposed, and the shoreline was
displaced roughly 139 km (86 miles) to the southeast of the present Long Island
area (Uchupi, 1968).

During the last 3,000 years, sea level has risen at a very slow rate. Bloom
and Stuiver (1963) found that submergence of the Connecticut coast occurred at the
rate of 0.1 m (4 inches) per 100 years during thig time period. This corresponds
closely to Newmann's (1966) data for the western Long Island area. Both agree
that sediment accumulation and salt marsh growth have been able to keep pace with
submergence only during the last 3,000 years. Prior to that time, the higher
rate of submergence prevented marsh development and maintained open lagoons and
bays at the sites of the present marshes.

Data on historic changes of the position of mean sea level at selected points
along the Atlantic coast hawve been obtained from tide observation stations
maintained by the U.S5. Coast and Geodetic Survey. Long-term records are needed
to determine trends in relative sea level rise that would otherwise be masked by
meteorologic effects on a short-term basis. Disney (1955) found that for the
60-year period from 1893 to 1953 mean sea level at New York City rose at the
average rate of 3.3 mm per year, for a total change of about 20 cm (8 inches}).
During the period from 1940 to 1960, mean sea level for stations along the
Atlantic coast rose at an average rate of 2.4 mm per year (Donn and Shaw, 1963).
More recent observations suggest that there has been a marked increase in the rate
of sea level rise during the last decade. During the period 1963 to 1970, sea
level at Willets Point rose at an average rate of 12.5 mm per year, for a total

rise of roughly 10 cm, or about 4 inches (Hicks, 1972). The above rates reflect
both eustatic and tectonic effects on sea level change with the tectonic component
being about 1.7 mm per year (Hicks, 1972). There appears to be a substantial

increase in the eustatic rate of gea level rise in the last decade as compared to
that observed earlier in this century.

It is impossible to relate ercsion of Long Island's north shore quanti-
tatively to changes in the position of mean sea level during the period of
historic record. A rising sea level creates deeper water offshore. Waves would
thus break closer to the beach zone. The greater amount of energy expended by
the waves at the beach zone could lead to increased erosion (King, 1969, p. 299).

During the short time-span of human development and planning, small sea level
changes would produce negligible effects on erosion of the north shore. However,
if sea level continues to rise at the present rapid rate for an extended periocd
of time, drastic changes in the erosion and accretion patterns of the north shore
could be expected.

C. Waves

Wave data for the north shore of Long Island are not available (U.S. Army
Corps of Engineers, 1969). Waves that affect the area are generated by local
winds. Long Island and Block Island stop ocean swells from entering Long Island
Sound. Northwest, north and northeast winds are responsible for the shallow-water



waves of short period that hit the coast. The limited fetch lengths - "horizontal
distance (in the direction of the wind) over which the wind blows" (U.S. Army
Coastal Engineering Research Center, 1966, p. A-12) - and shallow areas in the
Sound prevent build-up of large waves (Sanders and Ellis, 1961).

Northeast winds during storms are responsible for waves over 2 m (6.6 £t)
high in western areas of the Sound. Hurricanes can produce even larger waves.
The U.S. Army Corps of Engineers (1949) reported that waves 2 m (30 ft) high
occurred at Bridgeport, Conn., during the hurricane of September 21, 1938. Mo=xt
of the time, however, wave heights are small. At the Stratford Point light
station on the Connecticut coast north of Port Jefferson, observations of wave
height, direction and period were recorded during the three-year period from
October 1954 to October 1957 (Helle, 1958). Figure 2-3 shows the distribution
of wave heights during that period. Wave heights of 1.2 m (3.9 ft) or under
occurred roughly 98 percent of the time. The maximum wave heights were roughly
3m (10 ft), while wave periods ranged between 1.5 and 7.4 seconds. Although
these data are not applicable to any particular point on the Long Island coast,
they do indicate the nature of waves occurring in the Long Island Sound region.
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Fig. 2-3. Wave height frequency distribution, 1955-1957,
Stratford Point, Connecticut. Adapted from
tabular data of Helle (1958).

Beach profile development depends on wave and sediment characteristics. A
large range in sediment grain size exists on the beaches of the north shore;
given this sediment heterogeneity, beach profile development results largely from
wave action (Ellis, 1962). Local winds create the waves in Long Island Sound.
These waves have short periods, and hence they have large wave-height to wave-
length ratios. This makes waves on Long Island Sound relatively steep. Steep
waves are important agents of beach erosion as they tend to cause sediments to
move offshore into deeper water, rather than alongshore as littoral drift (Don
Wong, 1970; U.S. Army Corps of Engineers, 1964). Saville (1950), Bascom (1951)
and Scott (1954) have emphasized the importance of wave steepness in describing
waves which tend to erode beach sediments and produce the so-called "storm beach"
profile. Seasonal cycles of beach accretion in summer and beach erosion in
winter that occur along the California coast (Shepard, 1963a) and along the
barrier beaches of Long Island's south shore (Schuberth, 1972) have been related
to wave steepness. Residents of the Sound Beach area have reported a cycle of
beach sand depletion in winter followed by berm build-up in early summer. However,
seasonal cycles do not occur at all locations along the north shore.



D. Tides and Tidal Currents

A brief discussion of the tides of Long Island Sound is found in Gross et al.
(1972). The data of Table 2-1 show that tidal range increases from east to west.
The zones of deposition and accretion associated with wave action migrate across
the foreshore ag the state of the tide changes (Duncan, 1964). Berm development
takes place shoreward of the position of farthest advance of the swash-backwash
zone (see Fig. 2-2).

In a study of Connecticut beaches, Ellis (1962) reported that tidal current
velocities rapidly decreased as the shoreline was approached. He concluded that
littoral drift was produced mainly by wave action. Thig is probably the case for
much of the Long Island shore east of Port Jefferson. In contrast, under
conditicns of restricted flow such as at harbor entrances, tidal current
velocities are greater and hence play a greater role in determining volume and
direction of littoral drift. The greater tidal ranges at the western end of the
Sound probably increase the influence of tidal currents on littoral drift.

E. Winds and Littoral Transport

Wind speed and direction are important factors in determin?ng the rate of
littoral tramsport. Littoral transport of sediment occurs as either beach drift

Table 2-1. TIDAL RANGES, NORTH SHORE, LONG ISLAND, NEW YORK?

Tidal Range

location Me:n (£t) Sp;ing (£t)

Willets Point 2.2 (7.1) 2.5 (8.3)
Execution Rock 2.2 (7.3) 2.6 (8.6)
Eatons Neck Point 2.2 (7.1) 2.5 (8.2)
Port Jefferson Harbor 2.0 (6.6) 2.3 (7.6)
Herod Point 1.8 (5.9) 2.0 (6.8)
Mattituck Inlet 1.5 (5.0) 1.8 (5.8)
Horton Point 1.2 (4.0) 1.4 (4.6)
Truman Beach 1.0 (3.4) 1.2 (3.9)
Crient Point 0.8 (2.5) 0.9 (3.0)

ay.s. Dept. of Commerce, 1971. Tide tables, east coast of North
and South America. Washington, D.C. 290 p.
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in the zone of uprush and backwash, as suspension lcad in the surf zone, or as

bedload in the surf zone and offshore regions. The direction and rate of littoral
transport depend mainly on the angle of wave apprcach, and wave energy at the
shore, which in turn depend on the wind characteristics of the area (Saville and
Watts, 1969). Other factors which influence littoral transport are the
availability of sediment and its grain size distribution (Fairchild, 1966).
Seasonal changes in wind direction produce variations in the direction of

littoral transport. The net amount of littoral drift moving past a given point in
one year is the net rate of littoral transport at that point (Saville and Watts,
1969).

Littoral transport is the sole initial supply of sediment to those sections
of the north shore not backed by eroding bluffs. When the supply of sediment
naturally brought to an area by littoral transport is blocked by a barrier, such
as a groin or jetty, the beaches of that area will erode since they nc longer
receive gediment nourishment from updrift beaches. The littoral currents
associated with the eroding beach have become "starved" in the sense that they
tend to remove sediments without depositing material derived from upstream beaches.
The narrow beaches at some of the projecting headlands of the north shore can be
explained by vigorous littoral transport which removes more material than it
delivers. This is often the case when littoral transport is split in two
directions at the headlands (King, 1959). Littoral transport directions are thus
important in determining the sand budget for a particular stretch of coast. The
sand budget concept and its application to shoreline areas is discussed in Bowen
and Inman (1966). A map of littoral transport directions for the north shore is
shown in the fold-out map at the end of the report.

Fetch length is a limiting factor to the growth of wind waves in Long Island
Sound. Wind direction and speed are important factors determining wave
characteristics and, hence, littoral transport. Wind data for locations along
Long Island's north shore are not available. However, long-term wind data from
LaGuardia Field, New York, is probably representative of the wind conditions for
the western Long Island region. Wind data can be used in conjunction with fetch
lengths to determine the erosive potential of winds from different directions.
Table 2-2 relates the percentage of total wind movement and duration from
different directions to fetch lengths associated with waves capable of producing
erosion at 01d Field Point. Winds producing such waves occur about 55 percent of
the time, and account for over 61 percent of total wind movement. Winds from the
west-northwest, northwest and east-northeast (because of the relatively large
fetch in the east-northeast direction) appear to have the most potential for
creating erosive wave action at 0ld Field Point.

Severe Storms and Their Shoreline Effects

A. Types of Storms

Tropical cyclones and extratropical storms are important agents causing
erosion and shoreline damage on Long Island's north shore. Extratropical storms,
commonly referred to as northeasters, develop in the mid-latitudes in response to
the interaction of warm and cool air masses.

B. Tropical Cyclone Fregquency

On the basis of tropical cyclone tracks during the past 85 years, Simpson and
Lawrence (1971) have determined the frequency of tropical cyclones entering 93 km
{50 nautical miles) segments of the U.S. Gulf and Atlantic coasts. They
categorized the North Atlantic tropical cyclones as follows:

1, tropical storms: tropical cyclones with sustained winds of at least
35 knots (40 mph),

11



Table 2-2. WIND CONDITIONS AND FETCH T.ENGTHS AT OLD FIELD POINT,

NEW YORKa
W%nd . Percent Total Win Percept Total Windb Fetch'Distance(km)
Direction Movement, Per Year Duration, Per Year 0ld Field Point
W 4.9 5.2 46
WNW 13.5 10.9 28
NW 13.7 10.4 23
NNwW : 5.6 4.6 21
N 5.6 4.9 20
NNE 5.8 5.9 34
NE 8.3 8.8 44
ENE 4.3 4.8 97
E 1.5 2.9 --
ESE 0.9 1.9 -
SE 2.4 3.0 ——
SSE 5.3 6.1 -
S 6.4 7.5 -—
Ssw 5.6 6.9 -
SW 8.3 9.0 ——
WSW 7.9 7.2 -

a

pU-S. Army Corps of Engineers (1969, Appendix C).

Data taken at LaGuardia Field, New York from 1949 to 1961.
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2. hurricanes: tropical cyclones with sustained winds of at least
64 knots (73 mph), and

3. great hurricanes: tropical cyclones with sustained winds of at least
108 knots (125 mph). Great hurricanes cause severe coastal damage and
are usually accompanied by a 3 to 4 m (10 - 13 ft) storm surge.

Figure 2-4 gives the probabilities that tropical storms, hurricanes or
great hurricanes will occur in any one year for each of four 93 km (58 miles)
coastal segments of the Long Island area. The probabilities are calculated from

data given by Simpson and Lawrence (1971) on observed frequencies of tropical
cyclones over the B5-year period 1886 to 1970. The frequency of tropical cyclones
is greatest for the central portion of Long Island. Only one storm during the
period of record occurred in the western Long Island area.

C. Extratropical Storm Frequency

In a study of storms which caused significant water damage along the Atlantic
coastal margin of the United States during the period 1921 to 1962, Mather, Adams
and Yoshioka (1965) determined that the recurrence interval of northeasters in the
coastal areas of New York was about 1.2 years. For the Atlantic coast as a whole,
northeasters were found to be frequent during the months of November (most
frequent), March, October, February, December and January (least frequent). Also,
storm frequencies over the period of record are marked by a distinct rise in
recent vyears.

D. Storm Frequency Based on Shoreline Damage

The U.S. Army Corps of Engineers (1969) has reviewed literature on storm
occurrences that have affected the segment of shoreline from central Maryland to
the New Hampshire~Massachusetts state boundary. ' Storms passing through this
region were believed to have either caused some degree of shoreline damage on
Long Island or at least threatened the area. The storms were classified as
hurricanes, extratropical storms and tropical storms. Categories were assigned
to the storms on the basis of damage they inflicted on the shore areas of Long
Island as follows:

Category
A unusually severe damage
B severe damage
c moderate damage
D threatened area (no damage)

During the period 1635 to 1962 a total of 231 storms either threatened or did some
degree of damage to the Long Island shore areas (Table 2-3).

Only 27 storms of all types were recorded from 1635 to 1800. Storm data
during this time period is incomplete; however, the occurrence of storms that
produced severe damage (Category A) has probably been well documented. Based on
the 204 storms recorded for the period 1800 to 1962, we can state that the Long
Island area experiences a storm which causes moderate damage about once every two
vears. Unusually severe storms occur, on the average, three times every century.

E. Storm Surge
Both tropical cyclones and extratropical storms produce storm surges, defined

as the "difference between the observed water level and that which would have been
expected at the same place in the absence of the storm" (Harris, 1963, p. 2).
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The height of the surge associated with a particular storm depends, in part, on
the following four processes:

1. The inverted barometer effect. The sea level surface is elevated in
response to the low pressures associated with storms. In the open ocean,
a pressure drop of 33.86 millibars of mercury (1 inch) will theoretically
lead to a sea level elevation of 34 cm (13 inches) (Hobbs, 1970). 1In
Long Island Sound, basin boundaries cause a decrease in the magnitude of
this effect.

2. Wind set-up. Wind stress on the water surface will cause water levels to
increase along the fetch in a downwind direction. Wind stress, and,

hence, wind set-up are proportional to the square of the wind wvelocity.
Wind set-up is also enhanced by decreasing depth (Harris, 1963).
Easterly winds produce a large wind set-up effect in the western end of
Long Island Sound.

3. Wave set-up. Breaking waves transport water into the near-shore zone,
thus leading to increased height of the water level surface in this area.
Wave -set-up may account for as much as 1 to 2 m of storm surge height at
a beach (Gentry, 1966). The effect is maximized by waves which break
parallel to the coast (Harris, 1963).

4. Rainfall effect. Intense rainfall can lead to an increase of water
levels, especially in estuaries.

Shoreline configuration plays an important role in modifying storm surge.
In general, configurations which favor an increase in the range of astronomical
tide will also favor an increase in storm surge heights.

Shoreline damage and erosion are often related to the maximum tides pro-
duced by a storm. Factors which determine the magnitude of storm surge in
relation to mean high water are the stage of the astronomical tide, the intensity
of the storm, the speed of storm movement, and the angle of the storm track at the
shoreline (Hobbs, 1970). Tropical cyclones and northeasters produce different
effects with regard to the latter three factors.

Tropical cyclones range in diameter from 80 to 800 km (50 to 500 miles).
The strongest winds are located in a narrow band surrounding the center, or eve,
of the storm (Tannehill, 1950). The barometric pressure of the eye is a good
indicator of storm intensity (Harris, 1966); indeed, empirical relaticonships
suggest that hurricane central pressure is the dominant factor determining storm
surge (Hoover, 1957). Storm surge peaks and maximum wind velocities, however,
are not found at the eye of the storm, but are displaced to the right of the
storm track.

The wind pattern of tropical cyclones consists of a counterclockwise spiral.
The winds in the right quadrants of this spiral are more or less parallel with,
and reinforced by, the translational movement of the storm. This reinforcement
can be of considerable magnitude, as hurricanes have travelled at forward speeds
of over 50 knots (58 mph). Wind and wave set-up are at a maximum in the right, or
"dangerous™ half of tropical cyclones (Hall, 1939). South-facing coasts that are
aligned perpendicular to storm tracks receive the full impact of the reinforced
winds and wave set-up. North-facing coasts are somewhat protected. This is one
reason why the Connecticut coast of Long Island Sound usually experiences surges
of greater magnitude than the northern Long Island coast. Another factor is the
build-up of water along the Connecticut coast because of the effect of Coriolis
acceleration on currents directed into the Sound from east to west. TIf the storm
track passes to the right of a coast, wind and waves will be directed in an
offshore direction, thus minimizing shore damage due to tidal flooding (Hobbs,
1970). The winds to the left of the storm track are also weaker than those to the
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right, in that the winds blow in directions opposite to the translational move-
ment of the storm.

The dominant effect of shoreline orientation on storm surge can be seen by
comparing the storm tracks of the major damage-producing hurricanes of the Long
Island Sound region as shown in Figure 2-5. The hurricanes of September 21, 1938
and August 31, 1954 travelled in paths perpendicular to the shoreline. Figure 2-6
shows the surge heights produced by these two storms across the middle of Long
Island Sound. (Surge heights in the shallow bays along the coast were con-
siderably amplified, as shown in Table 2-4). The 1938 hurricane produced record
tides for both the eastern and western ends of the Sound. In the central section,
the profiles of both storms coincided with each other, but they are of record
height here alsoc. Data from tide observations suggest that a portion of the surge
of such storms hits the New England coast near Rhode Island, and that the surge
wave travels from east to west through Long Island Sound (Harris, 1963; Hall,
1939). The height of the storm surge decreases in the wide, central section of
Long Island Sound, but increases in height as the Sound narrows near its western
end as is shown in Figure 2-6. There is a lag of about two hours between the time
of storm passage and the time of maximal tidal height at Willets Point.

Extratropical cyclones are about three times as large as tropical cyclones
(Byers, 1959), though pressure gradients and hence, wind velocities of extra-
tropical storms are lower than those associated with tropical cyclones. Gusts of
hurricane velocity, however, have been associated with northeasters (Brumbach,
1965). Wind patterns of northeasters form a counterclockwise spiral directed
toward the center of low barometric pressure. Wind directions from such storms
at a particular area depend on the relative position of the storm track (Zeigler,
Hayes and Tuttle, 1959). When a storm center passes to the west of the Long
Island Sound area, winds initially blow from the east or southeast. As storm
movement progresses, the winds shift to a southerly and then a westerly direction.
This type of storm results in offshore winds for the north shore of Long Island.
Wave action on the coast is then minimal. If, however, the storm center passes
to the east of the Sound, the initial winds blow from the northeast. At a later
time, the winds veer to the north and northwest. This type of storm produces
onshore winds along the north shore, leading to increased wave height wind set-up
in the area.

The effect of northeasters on shoreline areas often depends on their speed
of forward movement. If the storm progresses rapidly, variable wind directions
over a given fetch length prevent the build-up of large storm waves. However, if
storm progress is delayed by ridges of high pressure, winds from a particular
direction have time enough to act on a given wave group, so as to produce waves of
maximum height for a specific wind velocity and fetch length (Burt, 1958;
Darrielsen, Burt and Rattray, 1957). The wave heights on an open coast produced
by a stationary northeaster of sufficient intensity may equal or exceed those
produced by many tropical cyclones. Thus northeasters with easterly winds of long
duration have the most effect in the Long Island Sound region.

The severe winds and extreme tides of tropical cyclones usually last less
than six hours (Gentry, 1966). The wind and wave effects of extratropical
cyclones, though perhaps less severe, can last up to four or five tidal cycles.
Prolonged attack on an eroding beach during successive high tides can lead to
substantial dune and bluff recession (Hayes and Boothroyd, 1969; Hayes, 1967).

F. Storms as Geologic Agents
Hurricanes and northeasters have played important roles in the modification

of the shoreline. The present Long Island shoreline is, in fact, mainly the
result of erosion and depogition caused by these storms. A severe northeaster
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or a hurricane can cause as much damage to the shore in a matter of a few hours
as it would take normal weather conditions to produce in a hundred years.
Observations indicate that "most energy is expended in present-day nearshore
marine environments, not in a uniform constant manner but rather in sporadic
bursts, or spurts, as a series of minor catastrophes® (Hayes, 1967, p. 52). Such
a catastrophe occurred on September 21, 1938. In a few hours the storm surge of
this hurricane levelled 6 m (19 ft) dunes on the Rhode Island coast that had been
building up since the occurrence of a hurricane of similar magnitude on

September 22, 1815 (Brown, 1939). The 1938 hurricane also caused glacial cliffs
15 m (48 ft) in height to recede over L0 m (33 £t).

Investigators of beaches in the New England area (Zeigler, Hayes and Tuttle,
1959; Hayes and Boothroyd, 1969) have concluded that beach profile development is
largely the result of the severity and frequency of storms affecting the area
within the previous few months. Storm activity does not necessarily cause all
beaches to erode; that is, wind direction and coastal configuration can cause
littoral drift to accumulate in areas downstream from those that are eroding
(Zeigler, Hayes and Tuttle, 1959).

The effects of the northeaster differ from those of hurricanes in that the
latter produce higher tides. However, northeasters are much more frequent than
hurricanes, and the combined effect of two or more storms in a short period of
time on beaches that have not achieved full post-storm beach build-up can be just
as devastating. Therefore, similar shoreline changes can be expected from a
hurricane, a severe northeaster, or several northeasters occurring in a short time
interval. However, the magnitude of the changes will probably be larger in the
instance of severe hurricanes as tidal inundation is the main cause of shoreline
damage (Freeman, Baer and Jung, 1957).

The impact of the September 21, 1938 and the September 14, 1944 hurricanes on
shores in the Long Island region has been well documented (Nichols and Marston,
1939; Howard, 1939; Brown, 1939; Chute, 1946). These studies indicate that there
will be differing results of severe storms for different shore environments. Two
main types of shore environment are found on Long Island's north shore; bluffed
coasts and bar beaches. Bluffed coasts are primarily erosion features, while bar
beaches, which include spits, baymouth bars and tombolos, are primarily depo-
sitional formations. The effects of hurricane attack on these two environments
are outlined in Table 2-5., The most dramatic changes - dune and bluff erosion and
inlet formation - are the result of the storm surge, which for a pericd of only a
few hours essentially creates a new shoreline of submergence in areas not
normally exposed to direct wave and tidal action (Brown, 1939). Figure 2-7 shows
the sequence of changes in profile development that would most likely occur on
Long Island's north shore as the result of hurricane activity.

Chute (1946) studied bluff recession along the southern Cape Cod coast
caused by the hurricane of September 14, 1944. The magnitude of cliff recession
was found to be related to several shoreline characteristics:

1. vVirtually no cliff recession occurred in those areas where the beach
was at least 42 m (138 ft) wide. Smaller beach widths were associated
with cliffs that retreated up to 15 m (48 ft) as a result of the storm.
The wider beaches were effective in absorbing wave energy.

2. High bluffs receded less than low bluffs. Given the same length of
recession, more debris will slump to the base of a high bluff than a
lower bluff. Therefore, more material must be removed by wave action
at the base of the high bluffs in order for additional recession to
occur.
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Table 2-5.

GEOLOGIC EFFECTS OF HURRICANES ON LONG ISLAND'S NORTH SHORE

Shore Environment

Bluffed Coast

Bar Beach

Beach recession. The mean high
water line migrates landward as
beach deposits are removed and
transported to near-shore bars.

Bluff recession. Bluff and head-
land erosion due to direct wave
attack occurs during the peak of
the surge flood.

Formation of wave-cut bench and
wave-built bench. Beach is
widened by formation of the wave-
cut bench. Material eroded from
the bluff is deposited on the
beach face, and in some instances,
raises beach elevation above
pre-storm values.

Beach recession. The mean high
water line migrates landward

as beach deposits are removed
and transported to near-shore
bars. A low flat "hurricane
beach profile" develops.

Dune erosion. Dune scarps
are formed as a result of
wave attack. Overtopping
occurs during extreme surges.

Inlet formation. Beach
lowering leads to inlet
formation, especially during
ebb flow of storm tide.

Deposition of tidal deltas
and overwash fans. Beach
and dune sands are deposited
in the bays and on the tidal
marshes, thus leading to
increased bar width.
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BLUFFED COAST BAR BEACH

BLUFF DUNE LINE
PRE -~ STORM

PRE - STORM

WAVE - CUT

BENCH EARLY POST STORM

WAVE - BUILT BENCH

______ T~

HURRICANE BEACH PROFILE

BEACH RIDGE
RIDGE
LATE POST STORM LATE POST STORM

BERMS

RIDGE WELDS TO DUNE BASE

WARD SHIFT OF MLW LINE. OF BAR.

Fig. 2-7. Expected beach profile changes due to hurricane occurrence.
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3. The presence of vegetation and duhe ridges at the bases of the bluffs
retarded bluff erosion.

4, Bluffs composed of till and clay were more resistant to wave attack than
those composed primarily of sands.

5. Seawalls were ineffective in curtailing bluff erosion unless they were
constructed heavily enough to withstand the forces of direct wave impact
and they extended to a height greater than that achieved by the storm
surge.

Clearly, these general findings also apply to the north shore of Long Island.
Bluffs fronted by wide beaches tend to erode less than those fronted by narrow
beaches. Under the same conditions of wave attack, a high bluff would be cut back
less than a low bluff. Vegetation stabilizing the bluff face also tends to retard
erosion.

Howard (1939) and Nichols and Marston (1939) found that inlets formed in
those sections of bars which were narrow and low in elevation. Also, large areas
of the bars were completely inundated at the peak of the storm surge. High storm
surges have a devastating effect on the north shore because of human development
on the bar formations.

The shoreline has a remarkable ability to restore itself to itsg pre-storm
condition (Nichols, 1967). Shoreline features are controlled by average, long-
term steady state conditions (Zeigler et al., 1964). Chute (1946) found that some
of the material eroded from the bluffs was deposited on the beach in the form of a
wave-built bench. In some instances, this deposition caused up to a 1.2 m (4 ft)
increase in beach elevation in backshore areas as compared to pre-storm values.
Some material is eventually restored to the beaches from the near-shore bars.
Therefore, the net effect of a severe storm on the bluffed coast of the north
shore is bluff recession and landward shift of the mean high water line (see
Fig. 2-7). Bar beaches become wider and flatter. The berms on the beaches
gradually build up a convex profile. The dunes, however, require many years to
build up to their former heights, and this process is often slowed by human
interfererice.

G. Bluff Erosion

Over long pericds of time, bluff and dune recession will correspond with the
recession of the high water shoreline. As mentioned earlier, dunes can erode or
accrete, while bluffs can only erode or remain stable. Over short time spans
(i.e. on the order of decades) bluff recession does not necessarily correspond
with movement of the high water shoreline. Sediment derived from an eroding bluff
can be deposited on the beach, resulting in accretion of the berm and no change in
position of the high water shoreline.

Studies of the bluff erosion on the Oregon coast (Byrne, 1963; North and
Byrne, 1965) indicated that landslide frequency correlated well with periods of
high wave activity and heavy precipitation. Kaye (1967) found that rainwash and
mass wastage (the sloughing off of soil sheets because of differential ice
melting) were the chief causes of erosion of a glacial cliff in Boston Harbor.

On the Long Island coast, direct wave attack, precipitation, ground water movement
in the form of spring discharge, and ice thaw seem to be responsible for bluff
recession.

Wave attack can either cut the bluff face directly, or act to prevent the
accumulation of a talus zone that would otherwise bury the cliff face and retard
erosion. 1In addition to their high tides and winds, tropical cyclones are usually
accompanied by intense precipitation which increases their erosive potential.
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In August 1955, 37 cm (15 inches ) of rain fell at Mineola during a 33-hour pericd.
The recurrence interval of this storm (hurricane Connie), based on its rain
intensity, is over 100 years (Miller and Frederick, 1969).

A major storm can cause as much bluff erosion in a single day as the"normal"
weather processes have in a number of years. As an example of such action, the
hurricane of September 14, 1944 cut the bluffs back at Shareham a horizontal
distance of over 12 m (39 ft),while creating a vertical cliff 3.3 m (10.8 ft)
in height (Joint Legislative Committee . . . , 1947).
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Chapter 3
COASTAL INVENTORY
General Shoreline Trends and Processes

Important features of the north shore of Nassau and Suffolk Counties are
summarized on large-scale base maps, each covering three to seven miles of
shoreline. Station locations, rates of shoreline erosion (E) or accretion (A),
and extent of the flood plain (stippled areas) are given on six base maps for
Nassau (Figs. 3-1 to 3-6) and 24 for Suffolk (Figs. 3-7 to 3-30). vVillages,
major roads, and waterways are also shown. The fold-out map at the end of the
report gives the location and figure number for each base map. Stations
included within the base maps are also indicated on the fold-out map.

Shoreline length for the north shore, the south shore, the eastern shores
of the Peconic Bays, and the various islands associated with the Peconics is

given in Table 3-1.

Annual shoreline erosion and accretion rates are indicated on the base maps
in feet per year, averaged over the 80-year period 1885 to 1965. For Suffolk
County the average erosion (E) or accretion (A) between two stations is listed.
For Nassau County, because the same resources were not available (see Methods,
page 90 ), the erosion-accretion rates at stations were determined. However, we
believe the location and number of stations suffice for prediction of the trend
between most stations. Erosion-accretion rates for all stations are given in
Figure 3-31, and indices of erosion or accretion are given in the Beach Utility
Index, Table 3-5.

We examined possible correlation of erosion-accretion rates with other
parameters, such as foreshore beach width and grain size. However, no evidence
of consistent relationships could be found.

The flood plain is the stippled region on each base map. The entire flood
plain is subject to inundation during a standard project hurricane. A standard
project hurricane is defined as a "hypothetical hurricane intended to represent
the most severe combination of hurricane parameters that is reasonably
characteristic of a specified region, excluding extremely rare combinations”
(U.S. Army Coastal Engineering Research Center, 1966, p. A-17). The number of
structures in the flood plain is listed by township in Table 3-2.

We were able to determine bluff recession rates for seven locations, in
addition to data previously obtained by other investigators (Table 3-3). The
locations of bluffs and dunes, as well as bluff heights, are listed as part of
the Beach Utility Index (Table 3-5).

Beach Trends and Processes

Grain size analysis (usually for both foreshore and backshore sand samples)
was performed for 79 stations. Median grain size, 16th percentile grain size, and
84th percentile grain size* are shown in Figure 3-32 for the forebeach and in
Figure 3-33 for the backbeach. Approximate grain size is also shown in the
Beach Utility Index (Table 3-5).

*Sixteen, 50, and 85 percent of the particles are smaller than the 16th
percentile grain size, median grain, and 84th percentile grain size,
respectively.
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The grain size of north shore beaches is determined by the effects of waves
and winds on glacial deposits from the ice age. Eroding bluffs also contribute
sediment to the beach, although much of the material may be too coarse to be
moved from the base of the bluff (except at storm tides) or may be too fine to
remain on the beach (see Fig. 3-34 for bluff grain size).

.Profiles of the beach perpendicular to the shoreline were taken for 80
stations. Though the profiles have not been incorporated in this study, the
beach widths* are shown in Figure 3-35 and in the Beach Utility Index.

Protection Measures

A. Engineered Structures

The purpose of groins (Fig. 3-36) is to retard sand movement or erosion.
However, "on the Jersey coast, where groins have been used extensively, it is
estimated that they have reduced the rate of sand movement by about 12 percent”
(Gross, 1972, p. 384). Groins can effectively save a beach on one side but
cause extensive erosion on the other side (Fig. 3-36).

Jetties are designed to prevent shoaling of a channel. Unfortunately, they
often cause accretion updrift of the channel and erosion downdrift of it, as
illustrated in Figure 3-37.

Bulkheads (Fig. 3-38) are designed to prevent loss of land, while seawalls
(Fig. 3-39) are designed to prevent waves from damaging upland features.

Groins, jetties, piers, seawalls and bulkheads are subject to wave action
and typically require continual maintenance to prevent their deterioration. 1In
1965, 55 percent of the groins in Suffolk County were in poor condition (Table
3-2). The percentage is probably higher now (1973).

An inventory of the above structures in Suffolk County by township is given
in Table 3-2. For an extensive treatment of the planning and design of protection
structures, consult U.S. Army Coastal Engineering Research Center (1966).

B. Vegetation and Terracing

Vegetation and terracing are important measures of bluff erosion control, but
to protect the bluff from direct wave attack (Fig. 3-40), bulkheading is also
necessary.

Wildwood State Park (Station 113) has essentially eliminated bluff erosion
(Table 3-4). This has cut off a source of sand for the adjoining beach, which
probably accounts for its narrow width and high rate of shoreline erosion (see
Beach Utility Index).

For further discussion of vegetation and terracing technigues, consult the
New York State Cooperative Extension Service, Agricultural Division, 246 Griffing
Avenue, Riverhead, N.Y. 11901, and How to Hold Up a Bank by Giorgina Reid (1969).

Beach Utility Index

The Beach Utility Index (Table 3-5) comprises six separate characteristics.
The numbers associated with each characteristic are defined in Table 3-4. Number
"l" represents the optimal state with successively higher numbers representing
conditions further and further from the ideal. Typical applications of the
utility index are discussed in Chapter 4.

*Beach width is defined as the distance from the mean high tide line to the
base of a bluff, dune or structure, such as a road.
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Table 3-1. LONG ISLAND SHORELINE

km* statute
miles
NORTH SHORE 342.6 213.0
Nassau County 87.5 54.4
North Hempstead 45.8 28.5
Oyster Bay 41.7 25.9
Suffolk County 255.1 158.6
Huntington 107.4 66.8
Smithtown 23.1 14.3
Brookhaven 63.0 39.2
Riverhead 23.2 14.4
Southold 38.4 23.9
SOUTH SHORE 176.4 109.6
Nassau County 28.7 17.9
Oyster Bay 4.8 3.0
Hempstead 23.9 14.9
suffolk County 147.7 91.7
Brookhaven 36.9 22.9
East Hampton 37.7 23.4
Southampton 43.7 27.2
Islip 10.5 6.5
Babylon 18.9 11.7
EASTERN FORKS 201.6 125.3
Southold 8l.6 50.7
Riverhead 8.2 5.1
Southampton 54.0 33.6
East Hampton 57.8 35.9
ISLANDS 107.8 67.0
Shelter Island 36.1 22.4
Fishers Island 31.0 19.3
Gardiners Island 23.5 14.6
Plum Island 11.2 7.0
Robins Island 6.0 3.7

* 1 km = .6214 statute miles
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Table 3-2. NUMBER OF STRUCTURES ON FLOOD PLAIN OF THE NORTHERN SHORE.

Number of

Tovneniz Yuheref | Nabergf, | Numbergh,  gewalle
and
Revetments '’

North Hempstead 29 - ~
Oyster Bay 226 - ~
Huntington 22 135 (83) 5 (2) 62 (7}
Smithtown 23 10 (5) 0 (0) 5 (1)
Brockhaven 190 26 (11) 6 (1) 29 (2)
Riverhead 71 26 (10) 0 (0) 26 (0)
Southold 152 40 (22) 3 (0) 15 (2)

a. . . . . PR
Numbers in parentheses indicate structures in poor condition.

bU.S. Army Corps of Engineers (1969), from field surveys taken in 1965.

“Houses counted on 197G aerial photographs.
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Table 3-3. BLUFF RECESSION RATES, NORTH SHORE, LONG ISLAND, N.Y.

Location Period of Record Recession Rate
(m/yr) (ft/yr)

Oak Neck Point 1915-19222 0.3 1.0
East Fort Point 1833-18832 0.9 3.0
Eatons Neck 1933-1966° 0.5 1.6
West Fort Salonga 1933-1966 0.5 1.6
Crane Neck Point 1911-1945°€ 0.8 2.6
01d Field Point 1933-19662 1.6 5.2

1911-1945§ 0.8 2.6

1886-1955 0.3 1.0
Belle Terre 1933—1961b 0.3 1.0

1933-1966 0.2 0.8
Miller Place 1948-1955% 0.6 2.0
Rocky Point 1933-1966 0.2 0.8
Wading River 1933-1966 0.5 1.6
Wildwood State Park 1933-1966 0.0 0.0
Oregon Hills 1933-1966 0.5 l.6
Horton Point 1933—1966b 0.2 0.5

1933-1960 0.5 1.6
Mulford Point 1933-1960° 0.3 1.0
0.7 mi. west of Orient Point 1933—1960b 0.6 2.0

2Johnson (1925).

chClimans, R. J. 1970. Suffolk County bluff and shore recession,
U.S. Department of Agriculture, Soil Conservation Service,
Riverhead, New York. Unpublished manuscript. 2 p.

CJoint Legislative Committee Studying the Problems of Checking
Erosion along the North Shore of Long Island (1947).

aU.S. Army Corps of Engineers (1969), Appendix L.
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Fig.

3-36. Groin Buildup at Plum Point, North Hempstead Township.

MAY, 1961 MAY, 1966 MARCH, 1970

—
1,000 FEET 500 METERS

3-37. Fort Goldsmith jetty, Southold Township, illustrating accretion
updrift and erosion downdrift of Fort Goldsmith Inlet,
Shoreline changes progress from before jetty construction
(left) to two years after construction (center) and six years
after construction (right). Dashed lines indicate the May
1961 shoreline,
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Fig. 3-38. cConcrete Bulkhead west of Hewlett Point, North Hempstead Township.

Fig. 3-39. Seawall at Centre Island, Oyster Bay Township.
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Eroding Bluffs at Lloyd Neck, Huntington Township.
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Chapter 4
CRANE NECK -~ A CASE STUDY

Introduction

The Crane Neck region is chosen for a detailed study of shoreline trends.
Much of the material for this Chapter is summarized from Davies (1972). The
region is similar in many respects to other sections of the north shore, as it
contains both bluffed coast and bar beach environments. Bluffs consisting of the
Manhasset formation (Fuller, 1914) are exposed at the projecting headlands of
Crane Neck Point and 014 Field Point. Baymouth bars are found at West Meadow
Beach, Flax Pond and 0ld Field Beach. The quantitative nature of accretion and
erosion during an 80-year period of record at Crane Neck is used to illustrate
the types of information that would be of value in developing a rational model
of beach and erosion control management for the north shore of Long Island.

Several studies have been conducted on the erosion problem at 01ld Field Point.
Teas (1956) stated that a lighthouse built at the Point in 1868 had to be
abandoned in 1933 because of severe bluff recession. Both Teas (1956) and
Tuthill (1959) believed that northeasters lasting for more than one tidal cycle
could be as severe as hurricanes in producing shoreline damage. Saville (1956)
suggested that the construction of a stone revetment 2287 m (7503 ft) in length
would curtail erosion at the Point, only if.the bluffs above the revetment were
sloped, terraced and planted to prevent bank undercutting by storm waves and rain
runoff. He felt that groins would be ineffective in creating a wide protective
beach at the Point because the immediate vicinity lacks a large =sand source. In
1964 a 229 m (751 ft) revetment with two groins was constructed (U.S. Army Corps
of Engineers, 1969) to alleviate the erosion (2.6 ft per year) to the west of
014 Field Point. The location of these structures is shown in Figure 4-~1. The
bluffs, however, were not terraced or planted. It is possible that these
structures have influenced shore equilibrium to the east of 0ld Field Point, as an
apparent increase in the rate of bluff recession has occurred in this area.
A local resident claims the base of the bluff at 01ld Field Point receded about
2 m (7 ft) between 1967 and 1972. This increase in erosion rate may have resulted
because the structures at the Point reduce the supply of sand to the beach east of
the Point. A reduction in beach width would increase wave activity at the base of
the bluff.

Other shore structures in the Crane Neck region are the jetties at Flax Pond
and at the entrance to Port Jefferson Harbor. Two jetties stabilize tidal flow
at Flax Pond. Previous to channel stabilization, the Flax Pond inlet migrated
from west to east, indicating a net littoral transport in this direction in the
area to the east of Crane Neck Point. A 214 m (702 ft) jetty constructed in the
vears 1876 to 1878 partially stabilized the migration of 01ld Field Beach at the
entrance to Port Jefferson Harbor. The jetty caused a maximum of 134 m (440 ft)
of accretion along 690 m (2264 ft) of beach west of the jetty. This indicated a
net littoral drift from west to east in the vicinity east of 0ld Field Point.
This is contrary to Saville (1956) who stated that littoral transport at 01d
Field Point was mainly from east to west. It is doubtful that littoral drift from
the beaches at Belle Terre to the east of Port Jefferson Harbor would be able to
cross the littoral barrier created by the harbor channel. Shoaling in the channel
during the four-year period 1957 to 1961 amounted to about 2300 m3 per year. This
tentatively indicated the small carrying capacity of littoral currents in the
region (U.S. Houge of Representatives, 1968},

The southern end of the bar at West Meadow Beach has been modified by the
construction of six groins which are indicated in Pigure 4-1., Spoil from
dredging operations in Stony Brook Harbor was placed near the groins in 1951 and
1965 (U.S. Army Corps of Engineers, 1969, Appendix F). These modificaticns

77



TUMOL USABUNOOIH ‘MooN oueid “[-p °Hrg

e

'« SNIOYS 9

S3TW 31nlvis

S 0
E— i
| S 0 Sem"
SHILINOUN m.
HOV3E MOQVIN 1S3Im
( INVOINMNH o
103rodd QMVANVIS 40 NIVd e

ao0713) HNOLNOY 1004 - N3IL
ONV MHW N33m138 gnNvd

)
i
f]
[l
[

i
{
m
i
i

HO3N |
[}
HNOLNOD 1004 - AINIML  ---- aNOY Xy INVYO |
sy p .\;./ \\\., N @
g = _A8s8
P B ,. . R
HOBYVH _..\.v..\\ e SN @
N - t ; .
i e e OV CORT
S3ILL3r 2 v

&
\ .\ ~
@ . lIr ﬁ’ \ ..-.
a.x.’ F/

HOv38 473i4 4730 )

o~ =—sNioY9 2 aNv INIWLIATN

INIOd @314 a0 @@

78



precluded use of this shoreline segment in the case study.

In the 1860s  approximately 15 to 20 thousand tons (9,900 to 13,000 m3) of
sand and gravel per year were removed from the beaches at Crane Neck and shipped
to the New York City market (Adkins, 1955). The exact location and effects of
this operation could not be determined.

Shoreline Erosion and Accretion

Shoreline changes during an 80-year period at Crane WNeck were calculated at
14 selected stations along a total shoreline length of about 10 km (6 miles).
Maximum erosion and accretion rates between stations were also determined as
shown in Tables4-1 and 4-2. The station intervals are shown in Figure 4-1.

Shoreline accretion occurred only at the bars. Over 2100 m {6900 ft) of
shore at West Meadow experienced either an accretion of up to 34 m (112 ft) or no
change in the position of the high water shoreline during the period of record.
At 014 Field Beach, 690 m (2264 ft) of shore to the west of the jetty at Port
Jefferson Harbor advanced a maximum of 134 m (440 ft). Both these areas are
receiving an amount of littoral drift equal to or greater than that which is
removed.

Erosion occurred along 7415 m (24,325 ft) of shore (72 percent of the Crane
Neck shore length). The largest recession, 81l m (266 ft), occurred in the region
just north of profile 85a. Several locations between Crane Neck Point and 014
Field Point experienced recessions up to 34 m (112 ft). The large recession at
the western part of 0l1d Field Beach 56 m (184 ft) may partially be explained by
barrier bar migration to the south. It is interesting to note that maximum
erosion rates were displaced away from the tips of the 014 Field and Crane Neck
Points. This may be explained by the process of wave refraction occurring at
these headlands (U.S. Army Coastal Engineering Research Center, 1966). Eroding
beach segments supply sediment to other areas, as they lose more material than
they receive.

Figure 4-2 shows a plot of erosion and accretion rates at various locations
versus shoreline distance. Zones of active erosion occur as troughs on the plot;
zones of active accretion occur as peaks. Such a plot can help indicate the best
locations for attempts to build up or maintain a beach, by groin fields or beach
nourishment. The troughs in the plot represent locations where shore protection
practices would necessarily be most extensive and, generally, most expensive.

Calculations of area change during th% 80-year period of record reveal that
there was a total net erosion of 187,300 m‘ (46.4 acres) of land over the entire
shoreline length studied. This net erosion represents a significant loss in
shorefront property. As expressed in Table 4-1, those station intervals with
average annual erosijon rates of over 1.0 ft per year appear to be areas of high
risk for the development of beach property. Locations with lower erosion rates,
or those areas experiencing accretion, are better suited for development because
of the lower risk involved. It should be kept in mind that this method of
assigning a risk category to an area is based on the single criterion of past
shoreline history. Other criteria, such as frequency of storm surge flooding,
must also be considered in developing a comprehensive damage-susceptibility index.

Flood Plain Zoning

Flood plain zoning is a technigue that has been used to reduce potential
property losses due to wave and tide action in coastal areas (U.S. Water Resources
Council, 1971, Vol. II, p. 19). Flood plain zoning codes regulate construction
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near the shoreline. To establish a coastal flood plain requires definition of
those areas subject to tidal flooding during storms. The relative frequency of
storm tides at Stratford, Conn. is shown in Figure 4-3. This frequency curve
would also hold for locations on Long Island's coast near Port Jefferson (U.S.
Army Corps of Engineers, 1969). A storm tide such as that produced by the
September 21, 1938 hurricane is likely to occur once every 30 years. A tide of
4 m (13.2 £ft) above mean sea level has been designated as the standard project
hurricane tide for the Port Jefferson area. The standard project hurricane is a
"hypothetical hurricane intended to represent the most severe combination of
hurricane parameters that is reasonably characteristic of a specified region"
(U.S. Army Coastal Engineering Research Center, 1966, p. A-17). The
characteristics of the September 14, 1944 hurricane were used to calculate the
standard tide.

Areas subiject to inundation by the standard project hurricane tide at Crane
Neck are identified in Figure 4-1, having been determined by the location of the
3 m (10 £t) contour. This flood plain boundary is a conservative estimate,
because flooding from a standard project tide would extend inland to elevations
greater than 4 m (13 ft) above mean sea level. In addition, hurricane waves can
drastically increase water levels at the shore. A wave will usually penetrate
inland a distance approximately equal to its wave length from the mean water
level (U.S. Water Resources Council, 1971, Vol. II, p. 132). Large hurricane
waves have the potential for inundating elevations higher than 4 m (13 ft),
especially in those areas directly on the Scund, such as the bars at West
Meadow, Flax Pond and 0ld Field Beach.

Offshore Depth Changes at Crane Neck

Changes in the position cf offshore depth contours recorded in 1885 to 1886
and in 1965 reveal trends in the direction of contour movement. At the projecting
headlands of Crane Neck and 0l1d Field Points (Stations 86, 89%a, and 90) the
offshore depth contours of 1965 were displaced seaward from their positions in
1885 to 1886. At the bar environments at West Meadow Beach and 0ld Field Beach
(Stations 83 and 90a) there was a trend for the offshore depth contours to move
landward during the period of record.

Volume changes along Stations 86, 89%a, and 90a to a depth of 9 m (30 ft) were
determined for the period of record by comparing beach profiles measured in 1965 by
the U.S5. Army Corps of Engineers (1969) with our profiles determined from 1885 to
1886 Coast and Geodetic Survey charts. The depths were determined directly from
the 1885 to 1886 charts (Figs. 4-4 to 4-6). To construct the 1885 to 1886 beach
profiles, recession of the bluff face or dune crest was assumed to coincide with
the recession of the high water shoreline and the erosion of the beach was
assumed to occur along a "profile of erosion" maintaining its form as it shifts
towards land (Zeigler et al., 1964). 1In this way the profile could be projected
seward a distance equal to the erosion during the period of record, and with the
location of the 1885 to 1886 offshore depth contours, the areas of cut and fill
along the profiles during the 80-year period could be ascertained. The areas
were converted to volumes by assuming a profile width of 1 m. The seaward
limit of the profiles, 9 m (30 ft), was believed to be a boundary within which
the bulk of littoral sediment movement took place. Cut and fill information is
shown in Table 4-3.

At Stations 86 and 90a the amount of material that is eroded from the beach
is more than that which is deposited at locations offgshore. Therefore, part of
the material eroded at these stations is supplied to other areas along the shore.
At Station 8%a, over three times the amount of material eroded from the shore is
deposited along sections of the station. This means that the area is receiving
more sediment from adjacent areas than it is losing. More detailed surveys of
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changes in closely spaced stations over short periods of time are required to
better evaluate the movement of material near the shore.

Table 4-3. VOLUMETRIC CUT AND FILL, SELECTED PROFILES, CRANE NECK, NEW YORK

Profile Net3Cut Net3Fill Percent Loss Percent Gain
m m
86 592 420 29
89a 204 616 202
90a 441 106 76

Sand Sources at Crane Neck

The eroding bluffs at Crane Neck and 0ld Field Points are the major sources
of sand supplying the nearby beaches. A rough estimate of the amount of material

delivered to the beach environment from the eroding bluffs has been determined as
follows:

Bluff Location Crane Neck Point 01d Field Point
length of eroding bluffs 1440 m (4720 ft) 720 m (2360 ft)
average bluff height 21 m (69 ft) 9 m (30 £t)
bluff recession rate 0.5 m per year 0.5 m per year
(1.6 £t per vear) (1.6 ft per year)

contribution of bluff 3 3
sediment 15,00C m~ per year 3,000 m~ per year

Thus, about 18,000m3of sediment are expected to enter the beach environment

during a year, while the bluffs recede an average horizontal distance of 0.5 m
(1.6 £t) along their entire length.

The Crane Neck bluffs consist of the Montauk till member of the Manhasset
formation, which ig a mixture of quartz and clay rock flour, coarse sands,
pebbles and boulders (Fuller, 1914). The large boulder, 6 m (20 ft) in diameter,
now located at the Beach at Crane Neck Point was seen embedded in the till of the
bluff face by Fuller (1914) in the early part of this century. A trench sample
of the bluff face at 0ld Field Point was taken for the purpose of sediment grain
size analysis. The results of that anlysis are shown in the histogram in
Figure 4-7. The histogram does not accurately represent the larger size grades,
for cobbles (64 to 256 mm) and boulders (greater than 256 mm) present in the
glacial till were not in the sample analyzed. The distribution of coarse sands
and finer fractions is, however, probably accurately represented. The till was
found to be very poorly sorted, with relatively large amounts of both very coarse

sand and coarge gilt. Over 36 percent of the total sample by weight consisted of
silts and clays.

The beach adjacent to the bluff at 0ld Field Point was also sampled for
grain size analysis, and the histogram is shown in Figure 4-8. Again, the coarse
fraction of cobbles and small boulders was not sampled. A grab sample was taken
of the finer beach sediments found in the intertidal zone. These sediments were
poorly sorted, and consisted mainly of pebbles (16 to 64 mm) and granules (2 to
4 mm). Legs than one percent by weight of the beach sample consisted of silt
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and clay. The change in grain size distribution between the bluffs, which are a
source of beach sand, and the beach shows the effectiveness of wind and wave
action in removing the silts and clays from the near-shore environment. Over 50
percent by weight of the bluff sediments are removed from the beaches, leaving
behind a lag deposit of granule and coarser fractions. The silts and clays are
lost either to offshore areas in central Long Island Sound, or inland because of

wind deflation. The results of this sorting action are also shown in the
grain-size distribution maps of Krebs (1963) for the offshore area west of Crane
Neck.

Thus the bluffs of the Crane Neck region are not supplying as much material
to the beach as one might expect. More than half the material in the bluffs is
of small grain sizes which are incapable of remaining in the high energy beach
environment. Much of the remaining portion consists of fractions larger than very
coarse sand. Roughly 20 percent of the bluff material consists of very fine to
medium sands, that fraction most capable of being transported alongshore as
littoral drift. The relatively small amount of very fine to medium sand available
explains why groins would be ineffective in building up large beaches in those
sections of the Crane Neck region backed by bluffs.

The glacial deposits which underlie the beaches and bars are the other
primary source of sediment at Crane Neck. The surface of this glacial material
corresponds to the "profile of erosion" of Zeigler et al. (1964). The bluff
face is the subaerially exposed part of the profile of erogsion. The bluff face
is cut back by both storm and "normal” weather activity. "Normal" weather refers
to weather conditions which do not produce extreme high tides and waves capable
of producing direct bluff attack. Cutting of that portion of the erosion profile
which is not subaerially exposed can occur only during severe storms which shift
the surface cover of beach sediments, exposing the uneroded glacial deposits to
direct wave action. Long-term landward movement of the entire profile of erosion
therefore results mainly from storms. Short-term changes in the configuration of
the beaches which mantle the erosion surface are not only the result of storms,
but also of "normal” weather conditions.

Zeigler et al. (1964) estimate that Cape Cod beaches receive roughly 50
percent of their sand supply from eroding bluffs, with the remaining 50 percent
supplied from the erosion of glacial sediments below sea level. These estimates
refer to the "new" sediment entering the beach system, and do not include
sediment carried as littoral drift. It is not possible at this time to determine
the guantity of sediment derived from the offshore areas that nourishes the
beaches at Crane Neck. The bluffs appear to be the major source of sediment.
Zeigler et al. (1964) determined that if the bluffs at Cape Cod were completely
stabilized, the reduction in sand nourishment would cause the beaches to
entirely disappear in 86 years. A similar relaticn probably holds true for the
north shore of Long Island.

Use of Beach Utility Index

The utility index described in Chapter 3 can be used to locate beach areas
amenable to development. The following considerations are important:

1. A beach which is accreting or subject to moderate erosion provides
greater protection to fixed structures than a beach which is subject
to severe erosion.

2. Areas fronted by high, stable bluffs or dunes have effective storm
protection provided by these barriers.

3. Wide beaches offer more space for recreation and greater protection
from pessible storm wave attack for inland areas.
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4. Beaches consisting predominantly of sand size sediment are considered
better for recreation than gravel or cobble beaches, because of the
greater difficulty in walking with bare feet on beaches consisting of
the larger grain sizes.

5. Beaches and near-shore areas that are easily accessible by public
roads which do not disturb residential areas, and that provide ample
space for parking are more suitable for recreational development than
inaccessible areas.

The application of the beach utility index to the Crane Neck area results in
the following conclusions:

1. Beach development at either Crane Neck or 014 Field Points (Stations 89
and 90) is not advisable because of poor access, narrow beach widths
and the large grain size of the beach sediments.

2. Construction of permanent structures between Crane Neck and 0ld Field
Points (Stations 87, 88 and 89) is not advisable because of the
potential erosion hazard. Very limited recreational usage can perhaps
be accommodated, with particular attention focused on the protection
of vegetation on the baymouth bars and in the Flax Pond wetlands.

3. Poor access limits the use of 01d Field Beach (Station 921) to
recreational boaters. Again, adequate measures will have to be
taken to protect wetland vegetation.

4. West Meadow Beach and the area immediately to the north (Stations 83,
84 and 85) offer the best options for future recreational development.
Access is adequate, and space for parking could be expanded by
acquisition of adjacent land. The beach is wide and tends to consist
of finer beach sediments. However, at Stations 84 and 85, due to
high rates of shoreline erosion, little or no permanent construction
should take place on the beach.
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Chapter 5

METHODS

Littoral Drift

The predominant direction of littoral transport can be determined by the
following methods (U.S. Army Corps of Engineers Coastal Engineering Research
Center, 1966):

1. Observation of erosion and accretion effects at existing shore
structures is the most reliable means of determining the direction
of littoral transport. However, care must be taken not to confuse
short-term effects with the long-term situation. The erosion and
accretion associated with significant shore structures, such as
jetties, can be generally taken to indicate the predominant transport
direction.

2. Headland configuration and its relationship to spit formation and
the location of pocket beaches gives an indication of the predominant
littoral transport direction. Spits and pocket beaches develop in
the downdrift direction from eroding headlands.

3. The migration of a tidal inlet or stream delta over long periods of
time will tend to be in the direction of littoral drift. As such,
unprotected channels are offset in a downdrift direction.

4. Variation of median grain size along a beach can give an indication
of sediment transport; the median grain size will decrease with
increasing distance from the source of the sediment, if sediment from
another source is not introduced into the beach zone.

The above methods were used to determine the directions of littoral transport
along the north shore of Long Island shown in the fold-out map at the end of the
report. Field observations, 1970 aerial photographs supplied by the Nassau-
Suffolk Regional Planning Board, and maps of shoreline trends supplied by the
New York Distriect, U.S. Army Corps of Engineers, were used. Other determinations
of longshore transport direction, such as analysis of wave energy components and
current measurement, were not used.

Base Maps and Station Determination

The base maps were traced from the most recent 7 1/2 minute quadrangle maps
of the United States Geologic Survey.

Field station locations in Suffolk County were the same, where possible, as
those of the U.S. Army Corps of Engineers (1969) study of the "North Shore of
Long Island, Suffolk County, New York." (See Table 5-1 for the equivalent
station numbers of both studies.) Field stations in Nassau County were chosen
to give approximately the same station density.

To study erosion and accretion we added stations between the field stations
in both Nassau and Suffolk Counties.

Erosion and Accretion

Several techniques can e utilized to estimate erosion and accretion for
shoreline areas (Stafford, 1971). Aerial photographs supplied by the Nassau-
Suffolk Regional Planning Board were not used, because scale variations on the
photographs were of sufficient magnitude to obscure actual shoreline trends in
the relatively short period of time between sets of photographs. Instead, old

90



Table 5-1 U.S. ARMY CORPS OF ENGINEERS
(1969) STATIONS AND THE EQUIVALENT
BI-COUNTY STATIONS

Army Bi~County Army Bi-County Army Bi-County Army Bi-County

Corps Corps Corps Corps
1 50 21 - 41 100 61 138
2 51 22 74 42 101 62 139
3 52 23 75 43 102 63 -
4 - 24 77 44 103 64 140
5 54 25 78 45 104 65 141
6 55 26 79 46 106 66 147
7 56 27 80 47 109 67 148
8 - 28 82 48 111 68 150
9 - 29 83 49 112 69 153
10 58 30 84 50 113 70 157
11 - 31 86 51 114

12 61 32 87 52 115

13 62 33 88 53 117

14 63 34 - 54 120

15 64 35 90 55 124

16 66 36 91 56 128

17 67 37 92 57 129

18 68 38 93 58 132

19 69 39 95 59 135

20 70 40 97 60 136
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maps and charts were compared with recent editions to provide quantitative
estimates of shoreline trends. Erosion amd accretion rates at the selected
stations along the north shore of Suffolk County were calculated by comparing
the position of the high water shoreline found on U.S. Coast and Geodetic Survey
charts surveyed in 1885 to 1886 with those of 1965 base maps compiled by the U.S.
Army Coastal Engineering Research Center. Because the U.S. Army Corps of
Engineers (1969) transposed the 1885 to 1886 charts on the 1965 base maps, the
area of erosion or accretion between stations could be determined. By dividing
this area by the length of shoreline between stations, the average erosion or
accretion rates between stations were determined. Rates of change at stations
on Nassau County's north shoreline were similarly derived using surveys made in
1886 and making comparisons with 1970 surveys. However, for Nassau County the
1886 charts were not transposed on the 1970 charts and consequently the area
changes between stations could not be determined. At the station locations in
both Nassau and Suffolk Counties, estimates of erosion and accretion between
survey dates were divided by the 80-year time interval to derive annual erosion
or accretion rates.

The estimated erosion and accretion rates are subject to many possible
inaccuracies, such as errors caused by surveying techniques and lack of
horizontal control while making map comparisons. The general trends, however,
are believed to be valid. The ratées reflect only net shoreline changes during
the period of record and, therefore, short-term changes may not be observed.
As an example, the high water ghoreline at a particular profile could have
eroded 30 m (98 ft) during the first 20 years of record, and then accreted
20 m (66 ft) during the next 10 years of record, to give a total net recession
of 10 m (33 ft) and a .calculated average erosion rate of 0.3 m (1 ft) per year
for the 30-year period of record. The fact that the shore did experience
accretion during the period of record is not reflected in the rate calculated.

Flood Plain

We determined the lateral extent of the flood plain from the elevation of
the standard project tide, i.e., the tide produced by a "hypothetical hurricane
intended to represent the most severe combination of hurricane parameters
that is reasonably characteristic of a specified region" (U.S. Army Coastal
Engineering Center, 1966, p. A-17).

The standard project tide for the north shore of Nassau County varies from
18 ft above mean sea level (msl) at the western County boundary to 17 ft above
msl at the eastern boundary (U.S. Army Corps of Engineers, 1972a). Because it
is 17 £t above msl at Stamford, Conn. (U.S. Army Corps of Engineers, 1972a) the
standard project tide is also 17 ft above msl at Eaton's Neck (U.S. Army Corps
of Engineers, 1969, p. C5). The standard project tide is 13 ft above msl for
Brookhaven township in Suffolk County (U.S. Army Corps of Engineers, 1972b).
The design hurricane tide, which is very similar to the standard project tide,
is 14 ft at Orient Point (U.S. Army Corps of Engineers, 1969, p. C5 and Fig. C-20)
The standard project tide is not currently available for Orient Point.

Interpolation of the elevation contours on the most recent 7 1/2 minute
quadrangle maps was then used to represent the standard project tide. Seventeen
feet was used from Eaton's Neck westward. Fifteen feet was used for the region
between Eaton's Neck and the entrance to Stony Brook Harbor, and the 13-ft
elevation was used from Stony Brook Harbor eastward.

Structures

) The number of habitation structures in the flood plain was determined from
aerial photographs, field surveys and topographic maps. The number of man-made
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protective structures (groins, etc,) was determined from Table Fl, U.S. Army
Corps of Engineers (1969).

Bluffs and Dunes

The existence of bluffs and dunes as well as bluff height was determined
from field studies, topographic maps, aerial photographs and the station profiles
(Plates 29 to 40 in U.S. Army Corps of Engineers, 1969).

Our bluff recession data was determined by comparing 1933 series (approximate
scale of 1:7200) and 1970 series (approximate scale of 1:4800) aerial
photographs of the Nassau-Suffolk Regional Planning Board. Because erosion of
50 £t is represented by only 1/8 inch on the 1970 aerial photographs, a slight
tilt or distortion in an aerial photograph would invalidate any measurement.

Bluff recession could be determined for a stretch of coast only if, first -
in order to determine scale - there were adequate reference points on a 1933
aerial photograph and its corresponding 1970 aerial photograph and topographic
quadrangle map and, second, there wag no apparent scale variation within both
the 1933 and 1970 aerial photographs. Five steps were then taken to determine
bluff recession:

1. A straight line, approximately parallel to the coast, was drawn
between two points on the 1970 aerial photograph.

2. A straight line was drawn between the same two points on the 1933
aerial photograph.

3. Equivalent perpendiculars to the lines were constructed on the 1933
and 1970 aerial photecgraphs.

4. The lengths of the perpendiculars were determined.
5. The true difference in length was then the amount of bluff recession.

Grain Size Analysis
Grain size analysis followed the methods described by Galehouse (1971).

Beach Access

Beach access was determined on location at each field station.

Beach Profiles

Beach profiles were determined by the method of Emery (1961).
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Chapter 6
CONCLUSIONS AND RECOMMENDATIONS
Conclusions

The time it takes a man to realize the ability of littoral forces to alter
segments of the coast, both in moving large volumes of material and in destroying
costly human development, varies from a few hours (from severe storms) to many
years (from normal weathering). Regardless of the time involved, the outcome is
usually the same: shoreline damage and public outcry for protection against such
damage in the future.

Man's interference with the shoreline in terms of channel dredging, harbor
construction, landfilling, construction of jetties, groins and seawalls has
caused the configuration of the shoreline to change. This change - the
establishment of new conditions of shoreline equilibrium - is the response of
winds, waves and tides interacting with the sediments and form of the shore.
In all cases, this change has not been to the benefit of man. Often shore
protection structures are built without enough knowledge of the littoral processes
affecting the shore adjacent to the structure. Unwanted erosion or accretion may
well result.

The practice of using jetties, groins, seawalls and beach fill for the
protection of our shores must be critically evaluated. Such methods are
extremely expensive and inherently dependent on the dynamics of the littoral
zone, and hence may or may not perform their intended function. Future
development of the north shore of Long Island should be designed to lessen the
need for such massive structures, by means of rational land-use planning to limit
potential storm damage from severe storms. Such planning requires understanding
of both the processes affecting the configuration of the shoreline and the
objectively determined needs for shore protection.

Rational shoreline management requires the use of scientific information in
a number of contexts. This report attempts to assemble and synthesize the types
of information useful to planners and engineers concerned with man's use of the
shore zone. Available knowledge of shoreline processes is sufficient to ocutline
rational shoreline management guidelines for Long Island's north shore.

Our conclusions are:

1. Long Island's surficial sediments and topography resulted from glacial
deposition which ended roughly 15,000 years ago.

2. The present shoreline is the result of erosion and deposition since
post-glacial sea level stabilization approximately 6,000 years ago.
The bluffs of Long Island's north shore are unconsolidated, easily
erodible sediments.

3. Long-term erosional trends are basically due to severe storms and
sea-level rise.

4. Short-term erosion and accretion are due to severe storms, normal
weather conditions, and man-made modifications.

5. The occurrence of a tropical cyclone in the Long Island area is a rare
event. Tropical cyclones are most likely to occur over the central
section of Long Island's north shore, where there is an 1l percent
chance of occurrence in a given year.
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lo.

11.

12.

Extratropical storms (northeasters) are frequent in the Long Island
area. A northeaster causing significant water damage on Long Island
occurs, on average, in eight of every ten yvears.

Bluffed coasts and bar beaches differ in their response to severe
storm attack. Direct wave action is a primary cause of severe bluff
erosion, Bar beaches are subject to dune destruction and extensive
flooding.

Rain runoff is also a significant cause of bluff erosion. Locally,
bluff erosion is intensified by extensive walking and climbing on
the bluff face slopes.

Plots of erosion and accretion rates versus shoreline distance can be
used teo indicate areas which are suppliers of sediment and those areas
where sediment is accumulating.

The beaches of the north shore are supplied with sediment from two
major sources:

(1) the bluffs, and (2) the glacial deposits beneath the beaches
and nearshore bars. A large proportion of the glacial and bluff
deposits consists of silts and clays which are removed from the
shoreline and deposited in the deeper areas of Long Island Sound,
thus lowering the amount of material available for beaches.

Widespread bluff stabilization and the maintenance of broad protective
beaches are incompatible. Extensive attempts to stabilize eroding
bluffs will, in the long run, adversely affect beach width by
decreasing the supply of sediment nourishing the beaches. Decreases
in beach width permit more intensive wave attack on the bluff face,
further frustrating attempts to stabilize bluff slopes behind them.
Loss of sediment supply from bluffs could cause the beaches to
completely disappear in decades. This emphasizes the importance of
the sand budget concept in beach management practice.

Neither individuals nor small community groups have the economic
resources to achieve stable conditions in areas subject to erosion.
Further, structures built for such purposes often cause erosion of
beaches beyond the owners' properties.

Recommendations

1.

Local ordinances should be modified by the establishment of a bluff
hazard zone applicable to those areas of the north shore backed by
eroding bluffs. The construction of dwellings on the top of the bluff
should be prohibited within 100 feet from the edge of the bluff face,
defined by an abrupt increase in slope.

Development on those lands contained in the flood plain of a 100-year
storm should be controlled by use of flood plain zoning. Structures
should not be built in the flood plain zone, with the exception of
relatively inexpensive structures required for recreation. All future
necessary construction on a flood plain should be located a sufficient
distance from the shore, so as to minimize damage from short-term
shoreline changes. Adequate construction set-back lines should be
established.

Marinas and boat-launching areas should not be built on the open
coast where they are subject to direct wave action, but in protected
areas such as harbors.
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Selection of sites for acguisition or development of bathing beaches
should employ the utility index (Chapter 3) in addition to other
factors such as the distribution of population density. This index
should also be used as a guide for private development.

Engineering structures, such as groins, should not be constructed by
governmental or private interests without sufficient knowledge of
the processes affecting the area to insure that such structures will
not increase erosion rates of adjacent property.

Natural shoreline vegetation should not be destroyed in the process of
development. This includes not only beach vegetation, but also trees
and shrubs on the face and tops of shore bluffs.

Recognizing the fact that wetlands protect adjacent uplands by
absorbing wave energy, stabilizing banks and serving as storage
areas for tidal waters, efforts should continue to protect wetlands
from the adverse effects of shoreline development. Use of
artificially created wetlands on a practical scale as inexpensive,
self-maintaining buffers against erosion of appropriate stretches
of Long Island's shoreline should be initiated.

Man's intentions to modify the shore zone should be reviewed and, if
appropriate, carried out within the context of modern planning methods.
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